Fourth Semester B.E. Degree Examination, June / July 08 Control Systems

Time: 3 hrs.

3

Max. Marks:100

Note: Answer FIVE full questions, choosing atleast two questions from each part.

PART - A

 a. Define control system. Compare open loop and closed loop control system with two examples for each type. (68 Marks)

Obtain differential equations describing the mechanical system shown in Fig. Q 1(b). Then
draw electric circuits based on F -V and F - I analogy. (12 Marks)

a. Find C(S) / R(S) for the signal flow graph shown in Fig. Q 2(a) using Mason's gain formula.

b. Determine the transfer function of a system whose block diagram is given in Fig. Q 2(b) below using the block diagram reduction technique.

Fig. Q 2(b) (10 Marks)

a. The open loop transfer function of an unity feed back control system is given by G(s) = K/S(1 + TS) (08 Marks)

G(s) = K /S (1 + TS)
 By what factor should the amplifier gain K be multiplied in order that the damping ratio is increased from 0.2 to 0.8?

 By what factor should K be multiplied so that the system overshoot for unit step excitation is reduced from 60% to 20%.

b. Find the position, velocity and acceleration error constant for a control system having open loop transfer function $GH(s) = \frac{4}{s(s+1)(s+2)}$. Also determine its steady state error for a unit step, ramp and parabolic inputs. What is the steady state error due to the transform input of $R(S) = \frac{2}{s} - \frac{1}{s^2}$. (08 Marks)

Derive an expression for generalized error coefficients.

(04 Marks)

4 a. A system oscillates with a frequency W rad /sec if it has poles at S = ± jw and no poles in right half of the S - planes. Determine the value of 'K' and 'a' so that the system shown in Fig. Q 4(a) below oscillates at a frequency of 2 rad /sec.

Fig. Q 4(a) (10 Marks)

b. Determine the ranges of K such that the characteristic equation $s^3 = (2k+3)s^2(6k+7)s + (7k+8.5) = 0$ has roots more negative than s = -1. (10 Marks)

a. Sketch the root locus and hence determine :

 The damping ratio and the corresponding value of K for maximum damped oscillatory response.

ii) The closed loop transfer function corresponding to (i) for a unity feed back system having $G(s) = \frac{k(s+3)}{s(s+2)}$. (10 Marks)

b. Discuss with a suitable example the importance of root locus diagram. (10 Marks)

6 a. State and explain Nyquist stability criterion. (08 Marks)

b. Draw the Nyquist plot for the given open loop transfer function $GH(s) = \frac{10(s+1)}{s^2(1+0.25s)}$

Determine the stability of the system using Nyquist stability criterion. (12 Marks)

7 a. The open loop transfer function of a unity feed back control system in given by $G(s) = \frac{k(s+1)}{s(1+0.1s)^2(1+0.02s)}$

Draw the Bode plot and hence find phase margin and gain margin for K =1.

 Determine the value of 'K' for a gain margin of 20 db and the value of 'K' for a phase margin of 30°.
 (14 Marks)

 Determine the transfer function of the given system whose Bode magnitude plot is as shown in Fig. Q 7(b).

Fig. Q 7(a) (06 Marks)

8 a. Write state space equation for the following equation :

$$L_a \frac{dia}{dt} + R_a i_a + k_b \theta = V_a(t) \text{ and } J \frac{d^2 \theta}{dt^2} + f \frac{d\theta}{dt} = T_a(t) \text{ where } T_a(t) = K_t i_a.$$
 (08 Marks)

b. Write short notes on : (12 Marks)

State transition matrix
 State space analysis
 Phase margin and gain margin.